Mori Y, Noda S, Shirai T*, Kondo A. (2021) Direct 1,3-butadiene biosynthesis in Escherichia coli via a tailored ferulic acid decarboxylase mutant. Nat Commun. 13;12(1):2195-2206.
Noda S*, Mori Y, Fujiwara R, Shirai T, Tanaka T, Kondo A. (2021) Reprogramming Escherichia coli pyruvate-forming reaction towards chorismate derivatives production. Metab Eng. 67:1-10.
Yuzawa T, Shirai T, Orishimo R, Kawai K, Kondo A, Hirasawa T. (2021) 13C-metabolic flux analysis in glycerol-assimilating strains of Saccharomyces cerevisiae. J Gen Appl Microbiol. in press
Iijima H, Watanabe A, Sukigara H, Iwazumi K, Shirai T, Kondo A, Osanai T. (2021) Four-carbon dicarboxylic acid production through the reductive branch of the open cyanobacterial tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Metab Eng. 65:88-98.
Nonaka D, Fujiwara R, Hirata Y, Tanaka T, Kondo A. (2021) Metabolic engineering of 1,2-propanediol production from cellobiose using beta-glucosidase-expressing E. coli. Bioresour Technol. 329:124858.
Fujiwara R, Noda S*, Tanaka T*, Kondo A. Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate. Nat. Commun. 11: 279-290.
Noda S, Mori Y, Oyama S, Kondo A, Araki M, Shirai T*. (2019) Reconstruction of metabolic pathway for isobutanol production in Escherichia coli. Microb. Cell. Fact. 18(1):124-133.
Satowa D, Fujiwara R, Uchio S, Nakano M, Otomo C, Hirata Y, Matsumoto T, Noda S, Tanaka T, Kondo A.(2020) Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply. Biotechnol Bioeng. 117(7):2153-2164.
Murai K, Sasaki D, Kobayashi S, Yamaguchi A, Uchikura H, Shirai T, Sasaki K, Kondo A, Tsuge Y. (2020) Optimal Ratio of Carbon Flux between Glycolysis and the Pentose Phosphate Pathway for Amino Acid Accumulation in Corynebacterium glutamicum. ACS Synth Biol. 9(7):1615-1622.
Kobayashi S, Kawaguchi H, Shirai T, Ninomiya K, Takahashi K, Kondo A, Tsuge Y. (2020) Automatic Redirection of Carbon Flux between Glycolysis and Pentose Phosphate Pathway Using an Oxygen-Responsive Metabolic Switch in Corynebacterium glutamicum. ACS Synth Biol. 9(4):814-826.
Iijima H, Watanabe A, Sukigara H, Shirai T, Kondo A, Osanai T. (2020) Simultaneous increases in the levels of compatible solutes by cost-effective cultivation of Synechocystis sp. PCC 6803. Biotechnol Bioeng. 117(6):1649-1660.
Sasaki K, Inoue J, Sasaki D, Hoshi N, Shirai T, Fukuda I, Azuma T, Kondo A, Osawa R. (2019) Construction of a Model Culture System of Human Colonic Microbiota to Detect Decreased Lachnospiraceae Abundance and Butyrogenesis in the Feces of Ulcerative Colitis Patients. Biotechnol. J. 14(5):e1800555.
https://www.ncbi.nlm.nih.gov/pubmed/30791234
Mori Y, Shirai T*. (2018) Designing artificial metabolic pathways, construction of target enzymes, and analysis of their function. Curr. Opin. Biotechnol. 54:41-44.
https://www.ncbi.nlm.nih.gov/pubmed/29452926
Fujiwara R, Noda S*, Tanaka T*, Kondo A. (2018) Muconic Acid Production Using Gene-Level Fusion Proteins in Escherichia coli. ACS Synth. Biol. 7(11):2698-2705.
https://www.ncbi.nlm.nih.gov/pubmed/30350569
Thomson NM, Shirai T, Chiapello M, Kondo A, Mukherjee KJ, Sivaniah E, Numata K, Summers DK. (2018) Efficient 3-Hydroxybutyrate Production by Quiescent Escherichia coli Microbial Cell Factories is Facilitated by Indole-Induced Proteomic and Metabolomic Changes. Biotechnol. J. 13(5):e1700571.
https://www.ncbi.nlm.nih.gov/pubmed/29266768
Noda S, Shirai T, Mori Y, Oyama S, Kondo A. (2017) Engineering a synthetic pathway for maleate in Escherichia coli. Nat. Commun. 8(1):1153-1165.
http://www.ncbi.nlm.nih.gov/pubmed/29074856
Noda S, Kondo A. (2017) Recent Advances in Microbial Production of Aromatic Chemicals and Derivatives. Trends. Biotechnol. 35(8):785-796.
http://www.ncbi.nlm.nih.gov/pubmed/28645530
Teramura H, Sasaki K, Kawaguchi H, Matsuda F, Kikuchi J, Shirai T, Sazuka T, Yamasaki M, Takumi S, Ogino C, Kondo A. (2017) Differences in glucose yield of residues from among varieties of rice, wheat, and sorghum after dilute acid pretreatment. Biosci. Biotechnol. Biochem. 81(8):1650-1656.
http://www.ncbi.nlm.nih.gov/pubmed/28622080
Ueda S, Kawamura Y, Iijima H, Nakajima M, Shirai T, Okamoto M, Kondo A, Hirai MY, Osanai T. (2017) Anionic metabolite biosynthesis enhanced by potassium under dark, anaerobic conditions in cyanobacteria. Sci. Rep. 6:32354-32362.
http://www.ncbi.nlm.nih.gov/pubmed/27576448
Noda S, Shirai T, Oyama S, Kondo A. (2016) Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives. Metab. Eng. 33:119-129.
http://www.ncbi.nlm.nih.gov/pubmed/26654797
Shirai T, Osanai T, Kondo A. (2016) Designing intracellular metabolism for production of target compounds by introducing a heterologous metabolic reaction based on a Synechosystis sp. 6803 genome-scale model. Microb. Cell. Fact. 15:13-18.
http://www.ncbi.nlm.nih.gov/pubmed/26783098
Fujiwara R, Noda S, Tanaka T, Kondo A. (2016) Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants. J. Biosci. Bioeng. 122(6):730-735.
http://www.ncbi.nlm.nih.gov/pubmed/27405271
Fujiwara R, Noda S, Kawai Y, Tanaka T, Kondo A. (2016) 4-Vinylphenol production from glucose using recombinant Streptomyces mobaraense expressing a tyrosine ammonia lyase from Rhodobacter sphaeroides. Biotechnol. Lett. 38(9):1543-1549.
http://www.ncbi.nlm.nih.gov/pubmed/27206340
Sasaki K, Okamoto M, Shirai T, Tsuge Y, Fujino A, Sasaki D, Morita M, Matsuda F, Kikuchi J, Kondo A. (2016) Toward the complete utilization of rice straw: Methane fermentation and lignin recovery by a combinational process involving mechanical milling, supporting material and nanofiltration. Bioresour. Technol. 216:830-837.
http://www.ncbi.nlm.nih.gov/pubmed/27318161
Teramura H, Sasaki K, Oshima T, Matsuda F, Okamoto M, Shirai T, Kawaguchi H, Ogino C, Hirano K, Sazuka T, Kitano H, Kikuchi J, Kondo A. (2016) Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol. Biotechnol. Biofuels. 9:27-37.
http://www.ncbi.nlm.nih.gov/pubmed/26839590
Osanai T, Shirai T, Iijima H, Nakaya Y, Okamoto M, Kondo A, Hirai MY. (2015)
Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium.
Front Microbiol. 6,1064.
http://www.ncbi.nlm.nih.gov/pubmed/26500619
Iijima H, Shirai T, Okamoto M, Kondo A, Hirai MY, Osanai T. (2015)
Changes in primary metabolism under light and dark conditions in response to overproduction of a response regulator RpaA in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol. 6,888.
http://www.ncbi.nlm.nih.gov/pubmed/26379657
Sasaki K, Okamoto M, Shirai T, Tsuge Y, Teramura H, Sasaki D, Kawaguchi H, Hasunuma T, Ogino C, Matsuda F, Kikuchi J, Kondo A. (2015)
Precipitate obtained following membrane separation of hydrothermally pretreated rice straw liquid revealed by 2D NMR to have high lignin content. Biotechnol Biofuels. 8,88.
http://www.ncbi.nlm.nih.gov/pubmed/26101546
Teramura H, Sasaki K, Oshima T, Aikawa S, Matsuda F, Okamoto M, Shirai T, Kawaguchi H, Ogino C, Yamasaki M, Kikuchi J, Kondo A.
(2015) Changes in Lignin and Polysaccharide Components in 13 Cultivars of Rice Straw following Dilute Acid Pretreatment as Studied by Solution-State 2D 1H-13C NMR.
PLoS One. 10, e0128417.
http://www.ncbi.nlm.nih.gov/pubmed/26083431
Noda, S., Shirai, T., Mochida, K., Matsuda, F., Oyama, S., Okamoto, M., Kondo, A. (2015) Evaluation of Brachypodium distachyon L-tyrosine decarboxylase using L-tyrosine overproduction Saccharomyces cerevisiae., PLoS ONE, 21, e0125488.
http://www.ncbi.nlm.nih.gov/pubmed/25996877
Noda, S., Kawai, Y., Tanaka, T., Kondo, A. (2015) 4-Vinylphenol biosynthesis from cellulose as the sole carbon source using phenolic acid decarboxylase-and tyrosine ammonia lyase-expressing Streptomyces lividans., Bioresource Technology, 180, 59-65.
http://www.ncbi.nlm.nih.gov/pubmed/25585255
Noda, S., Matsumoto, T., Tanaka, T., Kondo, A. (2015) Secretory production of tetrameric native full-length streptavidin with thermostability using Streptomyces lividans as a host., Microbial Cell Factories, 14(1), 5.
http://www.ncbi.nlm.nih.gov/pubmed/25582841
Osanai., T, Shirai., T, Iijima., H, Kuwahara., A, Suzuki., I, Kondo., A, Hirai., MY. (2015) Alteration of cyanobacterial sugar and amino acid metabolism by overexpression hik8, encoding a KaiC-associated histidine kinase. Environ Microbiol, 17, 2430-2340.
http://www.ncbi.nlm.nih.gov/pubmed/25403325
Matsuda, F. (2014) Rethinking mass spectrometry-based small molecule identification strategies in metabolomics. Mass Spectrometry. 3(S2), S0038.
Matsuda, F., Ogura, T., Tomita, A., Hirano, I., and Shimizu, H. (2014) NanoLC-MRM based quantitative platform for analyzing multiple enzymes associated with central metabolic pathways of Saccharomyces cerevisiae using ultra-fast mass spectrometry. J. Biosci. Bioeng.. 119, 117-120.
http://www.ncbi.nlm.nih.gov/pubmed/25060728
Joseph, A., Aikawa, S., Sasaki, K., Matsuda, F., Hasunuma, T., and Kondo, A. (2014) Increased biomass production and glycogen accumulation in apcE gene deleted Synechocystis sp. PCC 6803. AMB Express. 4, 17.
http://www.ncbi.nlm.nih.gov/pubmed/24949254
Osanai, T., Oikawa, A., Shirai, T., Kuwahara, A., Iijima, H., Tanaka, K., Ikeuchi, M., Kondo, A., Saito, K. and Hirai, M.Y. (2014) Capillary electrophoresis-mass spectrometry reveals the distribution of carbon metabolites during nitrogen starvation in Synechocystis sp. PCC 6803. 16, 512-524.
http://www.ncbi.nlm.nih.gov/pubmed/23796428
Miyazaki, T., Noda, S., Tanaka, T., Kondo, A. (2013) Hyper secretion of Thermobifida fusca beta-glucosidase via a Tat-dependent signal peptide using Streptomyces lividans., Microbial Cell Factories, 12(1), 88
http://www.ncbi.nlm.nih.gov/pubmed/24083334
Kawai, Y., Noda, S., Ogino, C., Takeshima, Y., Okai, N., Tanaka, T., Kondo, A. (2013)
p-Hydroxycinnamic acid production directly from cellulose using
endoglucanase- and tyrosine ammonia lyase-expressing Streptomyces lividans.
Microb. Cell Fact. 12, 45.
http://www.ncbi.nlm.nih.gov/pubmed/23604559
Noda, S., Kawai, Y., Tanaka, T., Kondo, A. (2013)
Creation of endoglucanase-secreting Streptomyces lividans for enzyme production using cellulose as the carbon source. Appl. Microbiol. Biotechnol. 97, 5711–5720.
http://www.ncbi.nlm.nih.gov/pubmed/23604559
Noda, S., Miyazaki, T., Tanaka, T., Ogino, C. and Kondo, A. (2013) High-level production of mature active-form Streptomyces mobaraensis transglutaminase via pro-transglutaminase processing using Streptomyces lividans as a host. Biochem. Eng. J. 74: 76-80
http://www.sciencedirect.com/science/article/pii/S1369703X13000508
Matsuda, F., Shirai, T., Ishii, J., Kondo, A. (2013)
Regulation of central carbon metabolism in Saccharomyces cerevisiae by metabolic inhibitors, J. Biosci. Bioeng.116, 59-64.
http://www.ncbi.nlm.nih.gov/pubmed/23453202
Shirai, T., Matsuda, F., Okamoto, M., and Kondo, A. (2013) Evaluation of control mechanisms
for Saccharomyces cerevisiae central metabolic reactions using metabolome data of eight single-gene deletion mutants, Appl. Microbiol. Biotechnol. 97, 3569-3577.
http://www.ncbi.nlm.nih.gov/pubmed/23224404
Ishii, J., Yoshimura, K., Hasunuma, T. and Kondo, A.(2012) Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR–XDH pathway, Appl. Microbiol. Biotechnol. 97, 2597-2607.
http://www.ncbi.nlm.nih.gov/pubmed/23001007
Matsuda, F., Kondo, T., Ida, K., Tezuka, H., Ishii, J. and Kondo, A.(2012) Construction of an artificial pathway for isobutanol biosynthesis in the cytosol of Saccharomyces cerevisiae, Biosci. Biotechnol. Biochem. 76, 2139-2141.
http://www.ncbi.nlm.nih.gov/pubmed/23132567
Suga, H., Matsuda, F., Hasunuma, T., Ishii, J., and Kondo, A.(2012)
Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol. 97, 1669-1678.
http://www.ncbi.nlm.nih.gov/pubmed/22851014
Kondo, A., Ishii, J., Hara, K., Hasunuma, T., and Matsuda, F.(2012) Development of microbial cell factories for bio-refinery through synthetic bioengineering, J. Biotech. 163, 204-216.
http://www.ncbi.nlm.nih.gov/pubmed/22728424